Wood Formation in Trees Is Increased by Manipulating PXY-Regulated Cell Division
نویسندگان
چکیده
The woody tissue of trees is composed of xylem cells that arise from divisions of stem cells within the cambial meristem. The rate of xylem cell formation is dependent upon the rate of cell division within the cambium and is controlled by both genetic and environmental factors. In the annual plant Arabidopsis, signaling between a peptide ligand CLE41 and a receptor kinase PXY controls cambial cell divisions; however, the pathway regulating secondary growth in trees has not been identified. Here, we show that an aspen receptor kinase PttPXY and its peptide ligand PttCLE41 are functional orthologs and act to control a multifunctional pathway that regulates both the rate of cambial cell division and woody tissue organization. Ectopic overexpression of PttPXY and PttCLE41 genes in hybrid aspen resulted in vascular tissue abnormalities and poor plant growth. In contrast, precise tissue-specific overexpression generated trees that exhibited a 2-fold increase in the rate of wood formation, were taller, and possessed larger leaves compared to the controls. Our results demonstrate that the PXY-CLE pathway has evolved to regulate secondary growth and manipulating this pathway can result in dramatically increased tree growth and productivity.
منابع مشابه
The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division.
Controlling the orientation of cell division is fundamental to the development of complex body plans. This is particularly apparent in plants, where development is determined by differential growth that results solely from changes in cell expansion and orientation of the cell division plane. Despite the fundamental importance of cell division orientation to plant development, the mechanisms reg...
متن کاملPlant Vascular Cell Division Is Maintained by an Interaction between PXY and Ethylene Signalling
The procambium and cambium are meristematic tissues from which vascular tissue is derived. Vascular initials differentiate into phloem towards the outside of the stem and xylem towards the inside. A small peptide derived from CLV-3/ESR1-LIKE 41 (CLE41) is thought to promote cell divisions in vascular meristems by signalling through the PHLOEM INTERCALLATED WITH XYLEM (PXY) receptor kinase. pxy ...
متن کاملEthylene and Auxin in the Control of Wood Formation
Hellgren, J.M. 2003. Ethylene and auxin in the control of wood formation. Doctoral thesis. Silvestria 268. ISSN 1401-6230, ISBN 91-576-6502-8 This thesis considers aspects of the regulation of growth rate and fibre properties in forest trees. These properties are both genetically determined and influenced by environmental stimuli. Induction of reaction wood is an environmentally induced process...
متن کاملPlan B for Stimulating Stem Cell Division
Plant development relies on two kinds of coordinated regulatory inputs to generate an optimal plant body. First are inputs regulating the spatial organization of cells in the plant. These ‘‘hardwired’’ inputs are invariant between individuals and their actions are buffered from the environment. Second are variable inputs that modify the development of tissues to optimize growth for given condit...
متن کاملWOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation
In plants, the cambium and procambium are meristems from which vascular tissue is derived. In contrast to most plant cells, stem cells within these tissues are thin and extremely long. They are particularly unusual as they divide down their long axis in a highly ordered manner, parallel to the tangential axis of the stem. CLAVATA3-LIKE/ESR-RELATED 41 (CLE41) and PHLOEM INTERCALATED WITH XYLEM (...
متن کامل